Abstract
Given a real matrix $\mathbf{A}$ with $n$ columns, the problem is to approximate the Gram product $\mathbf{A}\mathbf{A}^T$ by $c\ll n$ weighted outer products of columns of $\mathbf{A}$. Necessary and sufficient conditions for the exact computation of $\mathbf{A}\mathbf{A}^T$ (in exact arithmetic) from $c\geq \mathrm{rank}(\mathbf{A})$ columns depend on the right singular vector matrix of $\mathbf{A}$. For a Monte Carlo matrix multiplication algorithm by Drineas et al. that samples outer products, we present probabilistic bounds for the two-norm relative error due to randomization. The bounds depend on the stable rank or the rank of $\mathbf{A}$, but not on the matrix dimensions. Numerical experiments illustrate that the bounds are informative, even for stringent success probabilities and matrices of small dimension. We also derive bounds for the smallest singular value and the condition number of matrices obtained by sampling rows from orthonormal matrices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.