Abstract
In this paper, we focus on developing randomized algorithms for the computation of low multilinear rank approximations of tensors based on the random projection and the singular value decomposition. Following the theory of the singular values of sub-Gaussian matrices, we make a probabilistic analysis for the error bounds for the randomized algorithm. We demonstrate the effectiveness of proposed algorithms via several numerical examples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.