Abstract

New algorithms for stochastic approximation under input disturbance are designed. For the multidimensional case, they are simple in form, generate consistent estimates for unknown parameters under “almost arbitrary” disturbances, and are easily “incorporated” in the design of quantum devices for estimating the gradient vector of a function of several variables.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.