Abstract
We consider four different types of multiple domination and provide new improved upper bounds for the k- and k-tuple domination numbers. They generalize two classical bounds for the domination number and are better than a number of known upper bounds for these two multiple domination parameters. Also, we explicitly present and systematize randomized algorithms for finding multiple dominating sets, whose expected orders satisfy new and recent upper bounds. The algorithms for k- and k-tuple dominating sets are of linear time in terms of the number of edges of the input graph, and they can be implemented as local distributed algorithms. Note that the corresponding multiple domination problems are known to be NP-complete.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.