Abstract
Randomization-based privacy protection methods are widely used in collaborative filtering systems to achieve individual privacy. The basic idea behind randomization utilized in collaborative filtering schemes is to add randomness to original data in such a way so that required levels of accuracy and privacy can be achieved. Although there are various studies on privacy-preserving collaborative filtering using randomization, there are no well-defined privacy-preserving frameworks for collaborative filtering algorithms based on randomization. In this paper, we present eight randomization-based privacy-preserving frameworks for privacy protection in collaborative filtering schemes. We first group privacy-preserving methods into two broad categories. We then classify them based on private data. Final grouping is done while considering varying privacy concerns of individual users. The frameworks can be chosen according to individual users’ expectations and be utilized for privacy protection. The well-defined privacy-preserving frameworks form a basis for privacy protection based on randomized perturbation and randomized response techniques in collaborative filtering studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.