Abstract
The validity of many multiple hypothesis testing procedures for false discovery rate (FDR) control relies on the assumption that P-value statistics are uniformly distributed under the null hypotheses. However, this assumption fails if the test statistics have discrete distributions or if the distributional model for the observables is misspecified. A stochastic process framework is introduced that, with the aid of a uniform variate, admits P-value statistics to satisfy the uniformity condition even when test statistics have discrete distributions. This allows nonparametric tests to be used to generate P-value statistics satisfying the uniformity condition. The resulting multiple testing procedures are therefore endowed with robustness properties. Simulation studies suggest that nonparametric randomised test P-values allow for these FDR methods to perform better when the model for the observables is nonparametric or misspecified.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.