Abstract

Many combinatorial problems involve determining whether a universe of n elements contains a witness consisting of k elements which have some specified property. In this paper we investigate the relationship between the decision and enumeration versions of such problems: efficient methods are known for transforming a decision algorithm into a search procedure that finds a single witness, but even finding a second witness is not so straightforward in general. We show that, if the decision version of the problem can be solved in time f(k) cdot poly(n), there is a randomised algorithm which enumerates all witnesses in time e^{k + o(k)} cdot f(k) cdot poly(n) cdot N, where N is the total number of witnesses. If the decision version of the problem is solved by a randomised algorithm which may return false negatives, then the same method allows us to output a list of witnesses in which any given witness will be included with high probability. The enumeration algorithm also gives rise to an efficient algorithm to count the total number of witnesses when this number is small.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.