Abstract

In nature, search processes that use randomly oriented steps of different lengths have been observed at both the microscopic and the macroscopic scales. Physicists have analyzed in depth two such processes on grid topologies: Intermittent Search, which uses two step lengths, and Levy Walk, which uses many. Taking a computational perspective, this paper considers the number of distinct step lengths k as a complexity measure of the considered process. Our goal is to understand what is the optimal achievable time needed to cover the whole terrain, for any given value of k. Attention is restricted to dimension one, since on higher dimensions, the simple random walk already displays a quasi linear cover time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call