Abstract
Random walks on the circle group whose elementary steps are lattice variables with span or taken mod exhibit delicate behavior. In the rational case, we have a random walk on the finite cyclic subgroup , and the central limit theorem and the law of the iterated logarithm follow from classical results on finite state space Markov chains. In this paper, we extend these results to random walks with irrational span , and explicitly describe the transition of these Markov chains from finite to general state space as along the sequence of best rational approximations. We also consider the rate of weak convergence to the stationary distribution in the Kolmogorov metric, and in the rational case observe a phase transition from polynomial to exponential decay after steps. This seems to be a new phenomenon in the theory of random walks on compact groups. In contrast, the rate of weak convergence to the stationary distribution in the total variation metric is purelyexponential.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.