Abstract

In this paper, we investigate the random walks on metro systems in 28 cities from worldwide via the Laplacian spectrum to realize the trapping process on real systems. The average trapping time is a primary description to response the trapping process. Firstly, we calculate the mean trapping time to each target station and to each entire system, respectively. Moreover, we also compare the average trapping time with the strength (the weighted degree) and average shortest path length for each station, separately. It is noted that the average trapping time has a close inverse relation with the station’s strength but rough positive correlation with the average shortest path length. And we also catch the information that the mean trapping time to each metro system approximately positively correlates with the system’s size. Finally, the trapping process on weighted and unweighted metro systems is compared to each other for better understanding the influence of weights on trapping process on metro networks. Numerical results show that the weights have no significant impact on the trapping performance on metro networks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call