Abstract

A model of random walks on a deformable medium is proposed in 2+1 dimensions. The behavior of the walk is characterized by the stability parameter beta and the stiffness exponent alpha. The average square end-to-end distance l<R2(t)> approximately equals (2nu) and the average number of visited sites <S(t)> approximately equals (k) are calculated. As beta increases, for each alpha there exists a critical transition point beta(c) from purely random walks ( nu = 1/2 and k approximate to 1) to compact growth ( nu = 1/3 and k = 2/3). The relationship between beta(c) and alpha can be expressed as beta(c) = e(alpha). The landscape generated by a walk is also investigated by means of the visit-number distribution N(n)(beta). There exists a scaling relationship of the form N(n)(beta)approximately n(-2)f(n/beta(z)).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.