Abstract

To overcome limitations of using a single fixed time step in random walk simulations, such as those that rely on the classic Wiener approach, we have developed an algorithm for exploring random walks based on random temporal steps that are uniformly distributed in logarithmic time. This improvement enables us to generate random-walk trajectories of probe particles that span a highly extended dynamic range in time, thereby facilitating the exploration of probe motion in soft viscoelastic materials. By combining this faster approach with a Maxwell-Voigt model (MVM) of linear viscoelasticity, based on a slowly diffusing harmonically bound Brownian particle, we rapidly create trajectories of spherical probes in soft viscoelastic materials over more than 12 orders of magnitude in time. Appropriate windowing of these trajectories over different time intervals demonstrates that random walk for the MVM is neither self-similar nor self-affine, even if the viscoelastic material is isotropic. We extend this approach to spatially anisotropic viscoelastic materials, using binning to calculate the anisotropic mean square displacements and creep compliances along different orthogonal directions. The elimination of a fixed time step in simulations of random processes, including random walks, opens up interesting possibilities for modeling dynamics and response over a highly extended temporal dynamic range.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.