Abstract

Random walks process on networks plays a fundamental role in understanding the importance of nodes and the similarity of them, which has been widely applied in PageRank, information retrieval, and community detection, etc. An individual's memory has been proved to be crucial to affect network evolution and dynamical processes unfolding on the network. In this work, we study the random-walk process on an extended activity-driven network model by taking account of an individual's memory. We analyze how an individual's memory affects random-walk process unfolding on the network when the timescales of the processes of the random walk and the network evolution are comparable. Under the constraints of long-time evolution, we derive analytical solutions for the distribution of walkers at the stationary state and the mean first-passage time of the random-walk process. We find that, compared with the memoryless activity-driven model, an individual's memory enhances the activity fluctuation and leads to the formation of small clusters of mutual contacts with high activity nodes, which reduces a node's capability of gathering walkers, especially for the nodes with large activity, and memory also delays the mean first-passage time. The results on real networks also support the theoretical analysis and numerical results with artificial networks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.