Abstract

We consider random walks in dynamic random environments, with an environment generated by the time-reversal of a Markov process from the oriented percolation universality class. If the influence of the random medium on the walk is small in space-time regions where the medium is typical, we obtain a law of large numbers and an averaged central limit theorem for the walk via a regeneration construction under suitable coarse-graining. Such random walks occur naturally as spatial embeddings of ancestral lineages in spatial population models with local regulation. We verify that our assumptions hold for logistic branching random walks when the population density is sufficiently high.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.