Abstract
The partial differential equation of the random walk problem with persistence of direction and external bias is derived. By persistence of direction or internal bias we mean that the probability a particle will travel in a given direction need not be the same for all directions, but depends solely upon the particle's previous direction of motion. The external bias arises from an anisotropy of the medium or an external force on the particle. The problem is treated by considering that the net displacement of a particle arises from two factors, namely, that neither the probability of the particle traveling in any direction after turning nor the distance the particle travels in a given direction need be the same for all directions. A modified Fokker-Planck equation is first obtained using the assumptions that the particles have a distribution of travel times and speeds and that the average time of travel between turns need not be zero. The fional equation incopporating the assumption of a persistence of direction and an external bias is then derived. Applications to the study of diffusion and to long-chain polymers are then made.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.