Abstract

Abstract We further develop in this study the Random Walk on Spheres (RWS) stochastic algorithm for solving systems of coupled diffusion-recombination equations first suggested in our recent article [K. Sabelfeld, First passage Monte Carlo algorithms for solving coupled systems of diffusion–reaction equations, Appl. Math. Lett. 88 2019, 141–148]. The random walk on spheres process mimics the isotropic diffusion of two types of particles which may recombine to each other. Our motivation comes from the transport problems of free and bound exciton recombination. The algorithm is based on tracking the trajectories of the diffusing particles exactly in accordance with the probabilistic distributions derived from the explicit representation of the relevant Green functions for balls and spheres. Therefore, the method is mesh free both in space and time. In this paper we implement the RWS algorithm for solving the diffusion-recombination problems both in a steady-state and transient settings. Simulations are compared against the exact solutions. We show also how the RWS algorithm can be applied to calculate exciton flux to the boundary which provides the electron beam-induced current, the concentration of the survived excitons, and the cathodoluminescence intensity which are all integral characteristics of the solution to diffusion-recombination problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.