Abstract
In this chapter the strong Markov property is derived as an extension of the Markov property to certain random times, called stopping times. A number of consequences of the strong Markov property of Brownian motion and the simple random walk are derived. A derivation of the law of the iterated logarithm for Brownian motion is included in this chapter, from which some fine scale sample path properties of Brownian motion are derived as well.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.