Abstract

We introduce the Random Walk Approximation (RWA), a new method to approximate the stationary solution of master equations describing stochastic processes taking place on graphs. Our approximation can be used for all processes governed by non-linear master equations without long-range interactions and with a conserved number of entities, which are typical in biological systems, such as gene regulatory or chemical reaction networks, where no exact solution exists. For linear systems, the RWA becomes the exact result obtained from the maximum entropy principle. The RWA allows having a simple analytical, even though approximated, form of the solution, which is global and easier to deal with than the standard System Size Expansion (SSE). Here, we give some theoretically sufficient conditions for the validity of the RWA and estimate the order of error calculated by the approximation with respect to the number of particles. We compare RWA with SSE for two examples, a toy model and the more realistic dual phosphorylation cycle, governed by the same underlying process. Both approximations are compared with the exact integration of the master equation, showing for the RWA good performances of the same order or better than the SSE, even in regions where sufficient conditions are not met.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.