Abstract

An analytical method is proposed to study the response of a viscoelastic system with strongly non-linear stiffness force and under broad-band random excitations. The random excitations can be additive, or multiplicative, or both, and they can be stationary or non-stationary with evolutionary spectra. With the proposed method, contributions of the viscoelastic force to both damping and stiffness are taken into account separately, and then the extended version of the stochastic averaging, called the quasi-conservative averaging, is applied to the system to derive the averaged equation of energy envelope. Probability density functions of system responses, such as the total energy, the amplitude, and the state variables, can then be obtained analytically. The accuracy of the method is substantiated by comparing the analytical results with those from Monte Carlo simulations. Effects of parameters in the viscoelastic force and in the non-linear stiffness force on the system responses are also investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.