Abstract

A novel technique is developed for determining the stochastic response of linear dynamic systems with singular parameter matrices based on matrix pencil theoretical concepts and relying on Kronecker canonical forms (KCF). The herein developed solution technique can be construed as a generalization of the standard linear random vibration theory and tools to account for constraints in the system dynamics and for singular system parameter matrices. Further, in comparison with alternative generalized matrix inverse approaches providing a family of possible solutions, the KCF-based technique yields a unique solution. This is an additional significant advantage of the technique since the use of pseudo-inverses is circumvented, and the challenge of selecting an optimal solution among a family of possible ones is bypassed. Various diverse examples are considered for demonstrating the versatility and validity of the technique. These pertain to structural (multi-body) systems modeled by dependent degrees-of-freedom, energy harvesters with coupled electromechanical equations, and oscillators subject to non-white excitations described by additional auxiliary state equations acting as filters to white noise.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.