Abstract

ABSTRACT In this paper, the uncertainty propagation of an uncertain vehicle-track coupled system (VTCS) subjected to track irregularity is quantified using a polynomial-dimensional decomposition (PDD). Firstly, the conditional power spectral density (PSD) of response related to uncertain parameters is derived using the pseudo-excitation method. Secondly, the PDD surrogate model that can describe the probabilistic characters of the uncertainty propagation is established by conducting the dimensional decomposition to the conditional PSD with component functions and performing the Fourier expansion to the component functions. Finally, the dimensional reduction integration and Gauss integration are introduced to overcome the difficulty of high-dimensional integration when calculating the expansion coefficients. In numerical example, the proposed method is applied to the uncertainty quantification of vertical vibration response of an uncertain VTCS, the accuracy and efficiency of the proposed method are verified by comparing the results of the PDD method with that of Monte-Carlo simulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call