Abstract
Two important assumptions are often made in the analysis of molecular self-assembly at equilibrium, viz., that sequential is preferred to random aggregation and that the equilibrium constants at each stage of aggregation are equal, though both assumptions have not been justified strictly. In the present work we show that molecular self-assembly leading to formation of linear polymers and proceeding in a random manner appears to be less entropically favored than sequential aggregation, which provides a physical background for assuming sequential aggregation when studying molecular self-assembly in solution. Exact equations for analysis of experimental data for molecular assembly proceeding in a sequential manner were derived by taking strict account of the profile of the equilibrium constant, which provides a physically more correct approach than that using the conventional indefinite equilibrium constant (EK) model.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.