Abstract

We present a numerical inversion method for generating random variates from continuous distributions when only the density function is given. The algorithm is based on polynomial interpolation of the inverse CDF and Gauss-Lobatto integration. The user can select the required precision, which may be close to machine precision for smooth, bounded densities; the necessary tables have moderate size. Our computational experiments with the classical standard distributions (normal, beta, gamma, t-distributions) and with the noncentral chi-square, hyperbolic, generalized hyperbolic, and stable distributions showed that our algorithm always reaches the required precision. The setup time is moderate and the marginal execution time is very fast and nearly the same for all distributions. Thus for the case that large samples with fixed parameters are required the proposed algorithm is the fastest inversion method known. Speed-up factors up to 1000 are obtained when compared to inversion algorithms developed for the specific distributions. This makes our algorithm especially attractive for the simulation of copulas and for quasi--Monte Carlo applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.