Abstract

We discuss several connections between discrete and continuous random trees. In the discrete setting, we focus on Galton-Watson trees under various conditionings. In particular, we present a simple approach to Aldous’ theorem giving the convergence in distribution of the contour process of conditioned Galton-Watson trees towards the normalized Brownian excursion. We also briefly discuss applications to combinatorial trees. In the continuous setting, we use the formalism of real trees, which yields an elegant formulation of the convergence of rescaled discrete trees towards continuous objects. We explain the coding of real trees by functions, which is a continuous version of the well-known coding of discrete trees by Dyck paths. We pay special attention to random real trees coded by Brownian excursions, and in a particular we provide a simple derivation of the marginal distributions of the CRT. The last section is an introduction to the theory of the Brownian snake, which combines the genealogical structure of random real trees with independent spatial motions. We introduce exit measures for the Brownian snake and we present some applications to a class of semilinear partial differential equations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.