Abstract
We consider the discrete time unitary dynamics given by a quantum walk on the lattice $\Z^d$ performed by a quantum particle with internal degree of freedom, called coin state, according to the following iterated rule: a unitary update of the coin state takes place, followed by a shift on the lattice, conditioned on the coin state of the particle. We study the large time behavior of the quantum mechanical probability distribution of the position observable in $\Z^d$ when the sequence of unitary updates is given by an i.i.d. sequence of random matrices. When averaged over the randomness, this distribution is shown to display a drift proportional to the time and its centered counterpart is shown to display a diffusive behavior with a diffusion matrix we compute. A moderate deviation principle is also proven to hold for the averaged distribution and the limit of the suitably rescaled corresponding characteristic function is shown to satisfy a diffusion equation. A generalization to unitary updates distributed according to a Markov process is also provided. An example of i.i.d. random updates for which the analysis of the distribution can be performed without averaging is worked out. The distribution also displays a deterministic drift proportional to time and its centered counterpart gives rise to a random diffusion matrix whose law we compute. A large deviation principle is shown to hold for this example. We finally show that, in general, the expectation of the random diffusion matrix equals the diffusion matrix of the averaged distribution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.