Abstract
We introduce probabilistic frames to study finite frames whose elements are chosen at random. While finite tight frames generalize orthonormal bases by allowing redundancy, independent, uniformly distributed points on the sphere approximately form a finite unit norm tight frame (FUNTF). In the present paper, we develop probabilistic versions of tight frames and FUNTFs to significantly weaken the requirements on the random choice of points to obtain an approximate finite tight frame. Namely, points can be chosen from any probabilistic tight frame, they do not have to be identically distributed, nor have unit norm. We also observe that classes of random matrices used in compressed sensing are induced by probabilistic tight frames.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.