Abstract
We derive the mean eigenvalue density for symmetric Gaussian random N x N matrices in the limit of large N, with a constraint implying that the row sum of matrix elements should vanish. The result is shown to be equivalent to a result found recently for the average density of resonances in random impedance networks [Y.V. Fyodorov, J. Phys. A 32, 7429 (1999)]. In the case of banded matrices, the analytical results are compared with those extracted from the numerical solution of Kirchhoff equations for quasi-one-dimensional random impedance networks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physical review. E, Statistical, nonlinear, and soft matter physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.