Abstract

AbstractConditional on the extended Riemann hypothesis, we show that with high probability, the characteristic polynomial of a random symmetric $\{\pm 1\}$ -matrix is irreducible. This addresses a question raised by Eberhard in recent work. The main innovation in our work is establishing sharp estimates regarding the rank distribution of symmetric random $\{\pm 1\}$ -matrices over $\mathbb{F}_p$ for primes $2 < p \leq \exp(O(n^{1/4}))$ . Previously, such estimates were available only for $p = o(n^{1/8})$ . At the heart of our proof is a way to combine multiple inverse Littlewood–Offord-type results to control the contribution to singularity-type events of vectors in $\mathbb{F}_p^{n}$ with anticoncentration at least $1/p + \Omega(1/p^2)$ . Previously, inverse Littlewood–Offord-type results only allowed control over vectors with anticoncentration at least $C/p$ for some large constant $C > 1$ .

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call