Abstract

ABSTRACTSliced Inverse Regression (SIR; 1991) is a dimension reduction method for reducing the dimension of the predictors without losing regression information. The implementation of SIR requires inverting the covariance matrix of the predictors—which has hindered its use to analyze high-dimensional data where the number of predictors exceed the sample size. We propose random sliced inverse regression (rSIR) by applying SIR to many bootstrap samples, each using a subset of randomly selected candidate predictors. The final rSIR estimate is obtained by aggregating these estimates. A simple variable selection procedure is also proposed using these bootstrap estimates. The performance of the proposed estimates is studied via extensive simulation. Application to a dataset concerning myocardial perfusion diagnosis from cardiac Single Proton Emission Computed Tomography (SPECT) images is presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.