Abstract

Although several works have been published in literature on agave fibers and their biocomposites, accurate information about the choice of both the fibers and the manufacturing processes that allow the user to optimize the biocomposites properties in terms of strength and stiffness are not yet available; also, no theoretical models that can be used for an accurate evaluation of the mechanical properties of these biocomposites, are reported.To this aim, the present work intends to give a contribution by considering green epoxy biocomposites reinforced by both short and discontinuous sisal agave fibers arranged in proper MAT-type fabrics. In particular, an optimized manufacturing process that allows to obtain good quality biocomposites, is proposed. A detailed analysis of the experimental results, obtained through preliminary pull-out and tensile tests carried out, along with an accurate analysis of the damage process performed by SEM micrographs, have allowed to develop reliable theoretical models that permit the mechanical properties evaluation of the analyzed biocomposites.Finally, the comparison with the most performing short/discontinuous fiber biocomposites reported in literature has shown how the implemented biocomposites exhibit comparable tensile strength and significantly higher stiffness, also respect to biocomposites reinforced by more stiff and more expensive fibers (flax, hemp, etc.).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.