Abstract
Let $K\subset\mathbb S^{d-1}$ be a convex spherical body. Denote by $\Delta(K)$ the distance between two random points in $K$ and denote by $\sigma(K)$ the length of a random chord of $K$. We explicitly express the distribution of $\Delta(K)$ via the distribution of $\sigma(K)$. From this we find the density of distribution of $\Delta(K)$ when $K$ is a spherical cap.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.