Abstract
This communique first presents a novel multi-policy improvement method which generates a feasible policy at least as good as any policy in a given set of feasible policies in finite constrained Markov decision processes (CMDPs). A random search algorithm for finding an optimal feasible policy for a given CMDP is derived by properly adapting the improvement method. The algorithm alleviates the major drawback of solving unconstrained MDPs at iterations in the existing value-iteration and policy-iteration type exact algorithms. We establish that the sequence of feasible policies generated by the algorithm converges to an optimal feasible policy with probability one and has a probabilistic exponential convergence rate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.