Abstract

Classical Linear Discriminant Analysis (LDA) is usually suffers from the small sample size (SSS) problem when dealing with the high dimensional face data. Many methods have been proposed for solving this problem such as Fisherface and Null Space LDA (N-LDA), but these methods are overfitted to the training set and inevitably lose some useful discriminative information in many cases. To effectively utilize nearly all useful discriminative information, a not completely random sampling framework for the integration of multiple features is developed. However, this method has the following main disadvantage: By directly employing feature extraction, the newly constructed variables may contain lots of information originated from those redundant features in the original space. So, in this paper, we introduce a new random sampling LDA by incorporating feature selection for face recognition, that is, some redundant features are removed using the given feature selection methods at first, and then PCA is employed, finally we use random sampling to generate multiple feature subsets. Along this, corresponding weak LDA classifiers are naturally generated and an integrated classifier is developed using a fusion rule. Experiments on 4 face datasets (AR, ORL, Yale, YaleB) show the effectiveness of our algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.