Abstract

High dimensional model representation is under active development as a set of quantitative model assessment and analysis tools for capturing high-dimensional input-output system behavior based on a hierarchy of functions of increasing dimensions. The HDMR component functions are optimally constructed from zeroth order to higher orders step-by-step. This paper extends the definitions of HDMR component functions to systems whose input variables may not be independent. The orthogonality of the higher order terms with respect to the lower order ones guarantees the best improvement in accuracy for the higher order approximations. Therefore, the HDMR component functions are constructed to be mutually orthogonal. The RS-HDMR component functions are efficiently constructed from randomly sampled input-output data. The previous introduction of polynomial approximations for the component functions violates the strictly desirable orthogonality properties. In this paper, new orthonormal polynomial approximation formulas for the RS-HDMR component functions are presented that preserve the orthogonality property. An integrated exposure and dose model as well as ionospheric electron density determined from measured ionosonde data are used as test cases, which show that the new method has better accuracy than the prior one.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.