Abstract
We have calculated the joint probability distribution function for random reverse-cyclic matrices and shown that it is related to an N-body exactly solvable model. We refer to this well-known model potential as a screened harmonic oscillator. The connection enables us to obtain all the correlations among the particle positions moving in a screened harmonic potential. The density of nontrivial eigenvalues of this ensemble is found to be of the Wigner form and admits a hole at the origin, in contrast to the semicircle law of the Gaussian orthogonal ensemble of random matrices. The spacing distributions assume different forms ranging from Gaussian-like to Wigner.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Physical Review E
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.