Abstract

Using random Gaussian vectors and an information-uncertainty relation, we give a proof that the coherent information is an achievable rate for entanglement transmission through a noisy quantum channel. The codes are random subspaces selected according to the Haar measure, but distorted as a function of the sender's input density operator. Using large deviations techniques, we show that classical data transmitted in either of two Fourier-conjugate bases for the coding subspace can be decoded with low probability of error. A recently discovered information-uncertainty relation then implies that the quantum mutual information for entanglement encoded into the subspace and transmitted through the channel will be high. The monogamy of quantum correlations finally implies that the environment of the channel cannot be significantly coupled to the entanglement which, concluding, ensures the existence of a decoding by the receiver.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.