Abstract

This paper is the first of a series where we study quantum channels from the random matrix point of view. We develop a graphical tool that allows us to compute the expected moments of the output of a random quantum channel. As an application, we study variations of random matrix models introduced by Hayden \cite{hayden}, and show that their eigenvalues converge almost surely. In particular we obtain for some models sharp improvements on the value of the largest eigenvalue, and this is shown in a further work to have new applications to minimal output entropy inequalities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.