Abstract

Cancelable biometrics, a template transformation approach, attempts to provide robustness for authentication services based on biometrics. Several biometric template protection techniques represent the biometric information in binary form as it provides benefits in matching and storage. In this context, it becomes clear that often such transformed binary representations can be easily compromised and breached. In this paper, we propose an efficient non-invertible template transformation approach using random projection technique and Discrete Fourier transformation to shield the binary biometric representations. The cancelable fingerprint templates designed by the proposed technique meets the requirements of revocability, diversity, non-invertibility and performance. The matching performance of the cancelable fingerprint templates generated using proposed technique, have improved when compared with the state-of-art methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.