Abstract

The random phase approximation (RPA) correlation energy is expressed in terms of the exact local Kohn–Sham (KS) exchange potential and corresponding adiabatic and nonadiabatic exchange kernels for density-functional reference determinants. The approach naturally extends the RPA method in which, conventionally, only the Coulomb kernel is included. By comparison with the coupled cluster singles doubles with perturbative triples method it is shown for a set of small molecules that the new RPA method based on KS exchange yields correlation energies more accurate than RPA on the basis of Hartree–Fock exchange.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.