Abstract

In this paper we consider random perturbations of dynamical systems and diffusion processes with a first integral. We calculate, under some assumptions, the limiting behavior of the slow component of the perturbed system in an appropriate time scale for a general class of perturbations. The phase space of the slow motion is a graph defined by the first integral. This is a natural generalization of the results concerning random perturbations of Hamiltonian systems. Considering diffusion processes as the unperturbed system allows to study the multidimensional case and leads to a new effect: the limiting slow motion can spend non-zero time at some points of the graph. In particular, such delay at the vertices leads to more general gluing conditions. Our approach allows one to obtain new results on singular perturbations of PDE’s.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.