Abstract
Given a growth rule which sequentially constructs random permutations of increasing degree, the stochastic process version of the rencontre problem asks what is the limiting proportion of time that the permutation has no fixed points (singleton cycles). We show that the discrete-time Chinese Restaurant Process (CRP) does not exhibit this limit. We then consider the related embedding of the CRP in continuous time and thereby show that it does have this and other limits of the time averages. By this embedding the cycle structure of the permutation can be represented as a tandem of infinite-server queues. We use this connection to show how results from the queuing theory can be interpreted in terms of the evolution of the cycle counts of permutations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.