Abstract

Motivated by the search for best lattice sphere packings in Euclidean spaces of large dimensions we study randomly generated perfect lattices in moderately large dimensions (up to d=19 included). Perfect lattices are relevant in the solution of the problem of lattice sphere packing, because the best lattice packing is a perfect lattice and because they can be generated easily. Their number, however, grows superexponentially with the dimension, so to get an idea of their properties we propose to study a randomized version of the generating algorithm and to define a random ensemble with an effective temperature in a way reminiscent of a Monte Carlo simulation. We therefore study the distribution of packing fractions and kissing numbers of these ensembles and show how as the temperature is decreased the best known packers are easily recovered. We find that, even at infinite temperature, the typical perfect lattices are considerably denser than known families (like A(d) and D(d)), and we propose two hypotheses between which we cannot distinguish in this paper: one in which they improve the Minkowsky bound φ~2(-(0.84±0.06)d), and a competitor in which their packing fraction decreases superexponentially, namely, φ~d(-ad) but with a very small coefficient a=0.06±0.04. We also find properties of the random walk which are suggestive of a glassy system already for moderately small dimensions. We also analyze local structure of network of perfect lattices conjecturing that this is a scale-free network in all dimensions with constant scaling exponent 2.6±0.1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call