Abstract

When a beneficial mutation occurs in a population, the new, favored allele may spread to the entire population. This process is known as a selective sweep. Suppose we sample n individuals at the end of a selective sweep. If we focus on a site on the chromosome that is close to the location of the beneficial mutation, then many of the lineages will likely be descended from the individual that had the beneficial mutation, while others will be descended from a different individual because of recombination between the two sites. We introduce two approximations for the effect of a selective sweep. The first one is simple but not very accurate: flip n independent coins with probability p of heads and say that the lineages whose coins come up heads are those that are descended from the individual with the beneficial mutation. A second approximation, which is related to Kingman’s paintbox construction, replaces the coin flips by integer-valued random variables and leads to very accurate results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.