Abstract
At each stage of the packing of a closed interval K, a random number of random open intervals (the packing objects) are placed in that part of K which is as yet unoccupied. No overlapping between the packing objects is allowed. The packing prescription is such that the packing process terminates after at most a finite number of stages. Attention is focused on the final configuration, K = K– + G, where G is a random open subset of K, and is that part of K which is eventually occupied by packing objects, while K–, a random closed subset of K, is that part of K which remains unoccupied.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.