Abstract

Abstract We numerically examine dynamical irreversible to reversible transitions and random organization for periodically driven gliding dislocation assemblies using the stroboscopic protocol developed to identify random organization in periodically driven dilute colloidal suspensions. We find that the gliding dislocations exhibit features associated with random organization and evolve into a dynamically reversible state after a transient time extending over a number of cycles. At a critical shearing amplitude, the transient time diverges. When the dislocations enter the reversible state they organize into patterns with fragmented domain wall type features.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.