Abstract
This article is concerned with crossed products and their applications to random operators. We study the von Neumann algebra of a dynamical system using the underlying Hilbert algebra structure. This gives a particularly easy way to introduce a trace on this von Neumann algebra. We review several formulas for this trace, show how it comes as an application of Connes" noncommutative integration theory and discuss Shubin"s trace formula. We then restrict ourselves to the case of an action of a group on a group and include new proofs for some theorems of Bellissard and Testard on an analogue of the classical Plancherel theorem. We show that the integrated density of states is a spectral measure in the periodic case, thereby generalizing a result of Kaminker and Xia. Finally, we discuss duality results and apply a method of Gordon et al. to establish a duality result for crossed products by Z.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.