Abstract

We demonstrate an all-optical random number generator based on spontaneous symmetry breaking in a coherently driven Kerr resonator. Random bit sequences are generated by repeatedly tuning a control parameter across a symmetry-breaking bifurcation that enacts random selection between two possible steady-states of the system. Experiments are performed in a fiber ring resonator, where the two symmetry-broken steady-states are associated with orthogonal polarization modes. Detrimental biases due to system asymmetries are suppressed by leveraging a recently discovered self-symmetrization phenomenon that ensures the symmetry-breaking dynamics act as an unbiased coin toss, with a genuinely random selection between the two available steady-states. We optically generate bits at a rate of 3 MHz without post-processing and verify their randomness using the National Institute of Standards and Technology and Dieharder statistical test suites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call