Abstract

The key system serves as a vital foundation for ensuring the security of information systems. In the presence of a large scale of heterogeneous sensors, the use of low-quality keys directly impacts the security of data and user privacy within the sensor network. Therefore, the demand for high-quality keys cannot be underestimated. Random numbers play a fundamental role in the key system, guaranteeing that generated keys possess randomness and unpredictability. To address the issue of random number requirements in multi-sensor network security, this paper introduces a new design approach based on the fusion of chaotic circuits and environmental awareness for the entropy pool. By analyzing potential random source events in the sensor network, a high-quality entropy pool construction is devised. This construction utilizes chaotic circuits and sensor device awareness technology to extract genuinely random events from nature, forming a heterogeneous fusion of a high-quality entropy pool scheme. Comparatively, this proposed scheme outperforms traditional random entropy pool design methods, as it can meet the quantity demands of random entropy sources and significantly enhance the quality of entropy sources, ensuring a robust security foundation for multi-sensor networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.