Abstract
This paper introduces the estimated pattern denoising (EPD) wavelet transform for random noise attenuation in geophysical data. The proposed approach combines the capability of the Gaussian filter and dual-tree rational dilation wavelet transform (DT-RADWT) in random noise detection and suppression; we called this method Estimated Pattern Denoising (EPD). The EPD is an innovative approach in terms of estimation of the location and amplitude of the noise pattern, directly from the data. The employed approach produces a higher quality factor (Q-factor) than the conventional dyadic discrete wavelet transform (DWT) and separates the noise from the signal with higher accuracy. The EPD provides a data-driven scheme that resolves the complexity of the random noise model in noise suppression, using an auxiliary Gaussian filter. This approach does not require prior information about the noise source, statistical distribution, or frequency range. We show successful suppression of random noise using the proposed approach on synthetic and real field data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.