Abstract

The frequency-space (f-x) empirical mode decomposition (EMD) denoising method has two limitations when applied to nonstationary seismic data. First, subtracting the first intrinsic mode function (IMF) results in signal damage and limited denoising. Second, decomposing the real and imaginary parts of complex data may lead to inconsistent decomposition numbers. Thus, we propose a new method named f-x spatial projection-based complex empirical mode decomposition (CEMD) prediction filtering. The proposed approach directly decomposes complex seismic data into a series of complex IMFs (CIMFs) using the spatial projection-based CEMD algorithm and then applies f-x predictive filtering to the stationary CIMFs to improve the signal-to-noise ratio. Synthetic and real data examples were used to demonstrate the performance of the new method in random noise attenuation and seismic signal preservation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.